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Phenomenological theory of Lfiders bands 

J. SCHL IPF  
Institut for AIIgemeine Metallkunde und Metallphysik der Rheinisch Westf~lischen 
Technischen Hochschule Aachen, FRG 

The constitutive functions of deformation, work hardening rate, H, and deceleration, D, are 
specialized for various deformation paths, and related to the evolution of dislocation structure. 
Based on the variation with deformation of H and D it is shown that two modes of tensile 
deformation may be defined: a destabilizing mode which leads to the normal homogeneous 
deformation behaviour terminated by necking and rupture, and a stabilizing mode which gives 
rise to Lfiders band formation and subsequent homogeneous deformation. The conditions for 
L6ders banding are established and a simple mathematical description based on these con- 
cepts is given. A detailed discussion shows that with theories using only one structure par- 
ameter it is not possible to understand the L0ders phenomenon. 

1. Introduction 
Macroscopically non-uniform deformation processes 
in tension are observed in two forms: (i) necking and 
shear banding, where deformation is localized in space 
and changes with time; (ii) Lfiders band propagation 
and jerky flow, where deformation bands with invari- 
ant deformation profiles move along the specimen. 
Both forms, however, grow from local instabilities. In 
order to treat these phenomena theoretically, the role 
of two independent factors has to be clarified: plastic 
instability and flow localization. Since the work of 
Consid6re [1] plastic instability in tension is known to 
occur if the hardening rate is not sufficient to outweigh 
geometrical softening. The instability point {ao; so} is 
given by the Consid6re criterion dams = a, where o- 
and e denote local true stress and local true strain, 
respectively. On the other hand, flow localization 
involves spatial differences in strain or strain rate: 
localization occurs if gradients in strain or strain rate 
are accentuated [2]. While the Considare criterion is 
purely mechanical, localization criteria have to be 
derived from a consideration of the kinetics of defor- 
mation in space and time [3]. 

The deformation bands associated with Lfiders 
deformation, after an initial nucleation period, usually 
exhibit quasistationary behaviour: an apparently 
invariant deformation profile moves at constant 
velocity, VL, along the tensile axis. It has been shown 
elsewhere [4] that a truly stationary band at constant 
VL is possible only if the load, P, at constant nominal 
deformation rate, vM,remains constant. Since Lfiders 
strains are usually small, constant deformation rate is 
practically equivalent with constant extension rate, 
VM. Historically the term Lfiders band refers to the 
whole plastified region behind the band front. Plastic 
deformation, however, takes place mainly in a small 
region adjacent to the band front. In order to have a 
short term for this active plastic zone we call it L-band. 

2. C o n s t i t u t i v e  f u n c t i o n s  
In this paper we report on the investigation of plastic 
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deformation within the L-band, based upon the con- 
cept of  evolution of  the plastic state as developed by 
Hart [5], Mecking and Kocks [6], and others. Mecking 
and Kocks consider the dislocation contribution to 
the flow stress at constant temperature as a function 
a(Q, ~), where ~ (the overall dislocation density) 
characterizes the internal structure, and ~ is the defor- 
mation rate. During deformation each individual vol- 
ume element experiences a change in the flow stress 
which is determined by 

~aQ d l n ~  + 80@n~ ~ da - Oln d l n ~  (1) 

Thereby, the change of the flow stress is again decom- 
posed into two contributions: the first term on the 
right-hand side of Equation 1 represents the internal 
stress fields of the forest dislocations and is related to 
the stored energy; the second term represents a 
generalized viscous stress and is related to the energy 
dissipated by moving dislocations in overcoming the 
barriers. 

Upon integration, Equation 1 may be rewritten in 
the form 

A In a = A In O" H q- A In O-R (2) 

where A In o is the total or dynamical hardening 

,O In o- 
A In OH -- j ~ d In 0 = strain hardening 

(3) 
(81na 

A l n a  R - j ~  e d l n ~  = viscous hardening 

(4) 

In considering the change of a in a given volume 
element at x, time may be replaced by the local strain 
e [7]. This leads us to the evolution equation for the 
flow stress 

8 1 n a  x 8 1 n o  81no  # lna  8In  
3s - 81no~ 8e x+ #--[-n-~n~ o ~ x  

(5) 
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Following the nomenclature of Kocks et al. [3] and 
Estrin and Mecking [7] we omit the subscript x and 
define: 

d l n ~  
=- M = strain rate sensitivity 

(6) 

H = work hardening rate 
d l n a  d l n 0  _ 
d In ~ ~ de 

(7) 

While M is a unique function of the state variables, H 
is path dependent. For an unambiguous definition of  
H, therefore, the deformation path has still to be 
specified. For instance, if ~ = constant, 

dln_a d l n Q ~  0 1 n a  
H~ - d l n Q ~  de -~ d----e--" = Ha 

(8a, b) 
By contrast, (d In a/de), alone is not a unique definition 
of H. 

If  the load P is constant, we have 

He - dlna_ d l n Q Q  d l n a  

d i n  ---~---~ e ~ ~e e 
= 1 

(9a, b) 
Finally, if a = constant, 

dlna_ d l n Q ,  dln~r  
H~ - d l n q  ~ de ~ de 

= 0 

(10a, b) 

It is therefore desirable to distinguish between the 
work hardening rate, H, and the dynamical hardening 

rate d In a 
S = Oe (11) 

where S, like H, must be specified for the different 
deformation paths. Similarly, if ~ = ~(a, Q), the evol- 
ution of the deformation rate may be considered: 

d l n ~  01n~[ d l n a  a l n ~  d i n 0  = D 
d-----e"- = d l n a  1~ d-----Z- + ~ , de 

(12) 
which yields the relation 

1 
D = ~ ( a  - S) (12a) 

Again, by specifying the deformation path and com- 
paring Equation 12 with Equations 8, 9 and 10, one 
finds: 

d In ~ ~ H~ (13) 
D~ --- de = M 

d l n ~  = H p -  1 (14) 
De - de e M 

Since H, and He may differ greatly, care must be 
exercised in relating D and H for the appropriate 
deformation path. In uniform deformation, as in 
creep tests, D, and De represent the deceleration of the 
deformation rate. 

3. Stabilizing and destabilizing 
deformation modes 

In the following we concentrate on plastic states at con- 
stant load P. While De can be measured directly in an 
appropriate creep test, Hp can be determined only 
theoretically from the evolution of the dislocation 
density or indirectly from Equation 14. For M > 0 
deceleration is positive as long as Hp > 1. This means 
that fluctuations in ~ would decrease with increasing e 
and therefore deceleration renders the deformation 
stable. Thus De > 0, by virtue of Equation 14 being 
equivalent to Consid6re's criterion in creep under con- 
stant load. 

However, as deformation proceeds, ~(e) will eventu- 
ally saturate. Consequently, He will decrease until 
finally Hp < 1, and necking starts. Thus a transition 
from stable to unstable behaviour occurs at the stab- 
ility limit eD, where Hp = 1. We may call such behav- 
iour a destabilizing deformation mode. The reverse is 
true for the motion of an L-band. In this case defor- 
mation obviously starts with an accelerating rate 
(Dp < 0), as is signalled by the rapid load drop when 
the band is nucleated. Unlike the case of necking this 
unstable behaviour does not persist but turns into 
stable deformation characterized by decelerating k, 
until ~ ~ 0. This can be inferred from the fact that 
behind the L-band plastic deformation has ceased, or 
nearly so. We therefore conclude that a necessary 
prerequisite for Lfiders band formation is the tran- 
sition of He < 1 to He > 1 at the instability limit e0 
where Hp = 1. Correspondingly we may call such 
behaviour a stabilizing deformation mode. The real- 
ization of the two modes is governed by the sign of the 
deceleration rate [4]: 

dDe _ 021n~ v (15) 
7e = de de 2 

If  ?v > 0 (stabilizing mode) it is possible to have 
Lfiders bands, if Ye < 0 (destabilizing mode) one has 
uniform and continuous deformation. 

It is interesting to compare the work hardening 
behaviour of the two modes at P = constant, as can 
be inferred from the above considerations. Obviously, 
for both modes the dynamical hardening is given by 

A In a = e (16) 

This is represented by the straight lines in Fig. 1. Here 
the destabilizing mode (Fig. la) is characterized by the 
work hardening 

aH = I~Hv de > A l n a  (17a) A I n  

and by the contribution of the viscous stress 

A l n a  R = - ~ M D e d e  < 0 (17b) 

On the contrary, the stabilizing mode (i.e. the Lfiders 
band) obeys (Fig. lb): 

A l n a n  = f~Hede  < A l n a  (18a) 

A l n a  R = - ;~ M D e d e  > 0 (18b) 

Thus ~ must decrease or increase always in such a way 
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Figure l Decomposition of the flow stress, a, at constant load as a function of the true local strain, an = work hardening, o- R = viscous 
stress. (a) Destabilizing mode; a~(er = ultimate tensile strength as given by Consid6re's construction; al, a s = initial and saturation stress, 
respectively. (b) Stabilizing mode, leading to L-band formation, a F = stress at band front, % = centre of band, SE = strain at effective band 
end. 

that the viscous stress A In o- R exactly balances the 
inequality Equations 17a or 18a, respectively. 

If  M as defined by Equation 6 is set constant and 
inserted into Equation 4 we obtain 

1 
A In ~ = ~r  A In O" R --  f~ Dp de (19) 

This gives us, at least qualitatively, the dependence of 
A In ~ on s as shown in Fig. 2a for a Lfiders band. 
When ~(s) according to Equation 19 is known (Fig. 
2b) we obtain s ( t )  (Fig. 3) as the inverse function of 

de Pe 

t = J0 (20) 

Finally, for stationary L-bands moving at constant 
speed VL we may set s(x, t) = y(z); z = x - -  VE t . 

Then Equation 20 gives us 

y d y  (21) 
z(y) = flo y'( Y) 

where y'  - d y / d z ,  and e o is the strain at the centre of 
the L-band (i.e. at z = 0). 

4. A simple model for the L-band 
A In ~ as depicted schematically in Fig. 2a appears to 

.E 
<3 

In I~ F 

1 i 

Io 
>. 

EO ~:E Y 
(b) 

Figure 2 (a) Schematic representation of  the viscous stress accord- 
ing to Equation 19; (b) the corresponding deformation gradient in 
the L-band according to Equations 24a, b. The discontinuity at 
y = 0 is a consequence of the fact that the work hardening rate is 
finite. 

be well approximated by two pieces of parabola, or 
after differentiation by 

c~ln~ [ 2 ? v ( e -  e0); 0 ~< s ~< s0 

as  p 2•E(S - -  SO); S O ~< S. 

(22) 

Writing (OH/O In a)e = ( O H / ~ s ) e  - Cp and setting 
M = constant, comparison with Equation 15 gives us 

7~(0) = 2~'V = C F / M ;  

7p(SE) = 2~E = CE/M (23)  

eE marks the strain at which ~ has again fallen to ~v (cf. 
Fig. 2b). It may be considered as a possible definition 
of band end. 

In order to find solutions of Equation 22 which 
represent stationary L-bands, we make the trans- 
formations indicated above. Then the first integrals of 
Equation 22 are given by 

1 dy _ ~ e x p [ -  7 v ( Y -  s0)2]; 0 ~<y ~< e0(24a) 

s6 dz [ exp [ - -  YE(Y --  80)2], S O ~< y (24b) 

The integration constant - s6  is the maximum defor- 
mation gradient. It occurs at y = s0 which marks the 
centre of the L-band. These equations give the defor- 
mation gradient y '  as a function of the deformation 
y. It is depicted schematically in Fig. 2b. Since 

= - VL y'  it is clear that the deformation rate at the 
band front must jump from 0 to ~F. This discontinuity 
in ~ is unavoidable as can be seen from the following 
argument. Assume there is no discontinuity. Then, in 

hY 
E E 

-L Z~ 0 Z F Z 

Figure 3 Deformation profile of a moving Lfiders band. Z r and Z E 
mark the positions of the band front and band end as defined by 
y = 0 and y = eE, respectively. 
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the vicinity of s >~ 0 we may set ~ = ae". This yields 
d In ~/d~ = n/e, which in the limit e --* 0 according to 
Equation 14 would require He ~ - oo or M ~ 0. 
Both these limits are physically unfeasible. 

A similar argument applies to the point marked SE 
in Fig. 2. It would determine the true end of  the 
L-band, if k would become zero there: this would 
again require Hp--* oe or M ~ 0 which has been 
rejected. Therefore, deformation cannot cease com- 
pletely behind the L-band, there always remains some 
creep, however small. From Fig. 2b it is seen that SE is 
the strain at which ~ again takes the value ~F. Thus if 
~V "~ g0, the maximum strain rate, then SE may well be 
taken as an effective Lfiders strain. Otherwise, if creep 
behind the L-band is appreciable, the Lfiders strain SL 
as measured experimentally is a function of  the length 
of the tensile specimen [4] and may differ appreciably 
from SE. 

Introducing y = 0 and y -- SE into Equations 24a 
and 24b, respectively, we obtain 

ev = 40 exp (-- ?vs~) (25a) 

eE = e0[1 + (yF/YE) 1/2] (25b) 

Although all parameters characterizing the L-band 
can be obtained from the y '(y)-diagram, it would be 
desirable to have an analytical expression for the 
deformation profile. This requires an integration of 
Equation 24 which can be accomplished in terms of 
the function 

q~(y) = f0 yexp (x 2 ) dx (26) 

The result, depicted schematically in Fig. 3, is given by 

(1 q~_,(~/2~;z); 0 ~< z ~< zF ~/~/2 

Y -- ~0 = I (27) 1 
7~/-- ~ q~-~(r z ~< 0 

where q~-~(x) represents the inverse function of  
Equation 26, and ZF gives the position of the band 
front. An effective width of the L-band may be defined 
by WE = eLte~. 

Although during nucleation of the L-band the defor- 
mation path is not specified, we may use Equation 22 
for a quantitative demonstration of the localization 
condition. It is highly probable that nucleation takes 
place at a soft spot or at stress concentrations where 
the yield stress has a local minimum. Also the behav- 
iour of the deformation apparatus as described by the 
machine equation 

- - Jo ~ d x  ( 2 8 )  

is important. Here, G = P/Ao is the applied stress, 
EM = effective modulus of the stretching system, VM = 
cross head speed, L = length of  specimen. Single 
L-bands will form only if during nucleation the local 
deformation rate is so high that the maximum stress 
~r M reached is smaller than the average yield stress 
(ay , )  of the specimen. Otherwise homogeneous 
deformation would occur. The chance for aM < (aye) 
will be the greater, the smaller SM is, where SM is the 
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OL / /  -- ELK 

/ 
/ /  

/ / / /  
Oy 

Figure 4 Load-elongation diagram for steady state Lfiders band. 
Local strains SM, eLK, eL are explained in the text. Nominal stresses 
aM and aL represent nucleation stress and propagation stress, res- 
pectively, ay denotes the yield stress for homogeneous deformation. 

strain at which a = a M (cY. Fig. 4). The maximum 
stress aM will be reached when 6"a = 0, i.e. when 

~ dx = VM. In the range e < s0 Equation 24a yields 

= 40 exp [ -  yv(S - e0) 2] (29) 

Assuming a uniform deformation rate in a narrow 
region of width w as a crude approximation for 
the nucleation event and with VM satisfying 
W~ F < "7.) M < W~ 0 w e  have 

f : ~ d x  ,~ w ~ 0 e x p [ -  7F(e-- ~0) 2] = VM (30) 

When Equation 25a is inserted into Equation 30 one 
obtains after solving for SM: 

1 E(ln ~.'-~~ (In w~~ 1/2 ] (31) 
SM = 7~/-- 5 SV/ -- V M /  3 

Since the logarithmic terms can produce only small 
variations, the order of  magnitude of  ~M is given by 
1/7~/2 ~ [M/Cp(O)] 1/2. Thus, as in necking, a small 
strain rate sensitivity favours localization. It should be 
noted, however, that for L/iders band formation the 
initial slope of  the work hardening rate, Cp(0), is 
equally important. 

It is apparent from Equation 27 that in a 
phenomenological description the shape of the L-band 
is determined by the two integration constants s0 and 
s~ which cannot be reduced to phenomenological 
material parameters. They are related to the micro- 
scopic processes in the band. 

5. The L/iders strain 
Usually the actual deformation is concentrated in a 
L-band of width WE ~ L0, the initial length of the 
tensile bar. However, the Lfiders strain, SL, as 
measured experimentally (cf. Fig. 4) still contains con- 
tributions from creep deformation in the wake of  the 
L-band and from the non-stationary processes during 
nucleation and termination of  the band. Therefore, in 
order to obtain a theoretical estimate of sL we make 
the following simplifying assumptions: (i) we consider 
an infinite tensile bar with the gauge length L0 indi- 
cated by markers at x = - L0; x = 0; (ii) upon 
stretching, a fully developed L-band moves from - oo 
to +o e .  At t = 0 the band centre (s = e0) is at 
x = - Lo. While the band moves the gauge length 
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changes from L0 to L so that the propagation time of  
the band is given by tp = L/VL and the marker at the 
initial position x = - L0 is shifted to x -- - L; the 
effective width of  the L-band, WE ~ L0. Then e*, the 
strain at x = - L reached after tp, is very close to the 
experimental value eL. According to Equation 20 

L f~[ de 
tp - - (32) 

vL ~(e) 

Introducing e~ instead of  eL into the well-known rela- 
tions VL = VM/eL and L = Lo exp (eL), we obtain 

VM [ de 
e* = L--0- exp ( -  st) fs (33) ~(e) 

As is easily seen, this is equivalent to using the inverse 
function of Equation 21 and setting z = - L. In the 
model presented above Equation 21 yields 

1 b l  * e* = So + 7~/---7 ( -  e'oLoT~/2 e '~) (34) 

1 
zv - _ e;7~/2 qS(e07~/2) (35) 

6. Discussion 
In the preceding sections it was shown that three 
requirements must be met in order to obtain an L- 
band: 

(i) initial instability: Dp(0) < 0 
(ii) stabilizing mode: 7p > 0 
(iii) localization condition: 7p(0) >> 1. 

The first of  these conditions is equivalent to tip < 1; 
M > 0 or He > 1; M < 0 for e < s0. While it is 
generally accepted that M < 0 is a condition for ser- 
rated flow, the L-bands considered here form in 
material states where M > 0. Thus our condition for 
L-band formation is He < 1; e < So. This is at vari- 
ance with the proposition of  Wijler et al. [8] who give 
Ha < 0. The latter condition is probably inferred 
from the fact that the initial slope of the load -  
elongation curve is negative when a Liiders band is 
formed. However, this reflects only the nucleation 
event, while during spreading of  the band the load 
remains constant. 

It is easily seen that the above conditions cannot be 
satisfied in theories employing only one structure par- 
ameter. These theories can describe only continuous 
deformation. According to Mecking and Kocks [6] the 
plastic behaviour in continuous tensile deformation of  
most metallic materials may be rationalized in the 
form 

a(~, ~) = %Gb[o(e)] m (~/~)M (36) 

where ~ = constant refers to a reference state, G is the 
shear modulus, b is the Burgers vector, and a0 .~ 0.5. 
as shown by Estrin and Mecking [7], this one- 
parameter-approach yields in the case of constant 
load: 

(~s)' = A l -F  A2e.-I- A3 exp ( -  e/er) (37) 

where A1, A2, A3, er, ss, and n are constants > 0. 
Inspection of  this equation reveals that indeed it 

represents a destabilizing mode only (TP < 0 through- 
out). 

Stabilizing modes can be obtained, if the mobile 
dislocation density 0m(e) is introduced as an addi- 
tional structure parameter. The mobile dislocation 
density has been considered in previous theories of  the 
Lfiders phenomenon [9-11]. In these theories, how- 
ever, no clear distinction is made between mobile and 
immobile dislocations. A linear superposition 

= ~(e) + o,(~/~)M (38) 

for the dislocation components of  the flow stress is 
used which is at variance with Equation 36. Moreover, 
the evolution of the forest dislocation structure is 
neglected. These are serious deficiencies, since the 
superposition is essentially non-linear as revealed by 
the constitutive laws Equations 2 or 29, and the evol- 
ution of  the forest density, 0, is important for the 
development of  the work hardening rate, Hp. A 
detailed model including these features will be given in 
a forthcoming paper [12]. 

As noted by Gilman [10], creep curves i(e) of LiF 
resemble the s-curves in Lfiders banding (cf. Fig. 2b). 
This kind of creep, however, is qualitatively different 
from creep as described by Equation 37. It is also 
observed in creep of germanium and silicon [14]. If  
these materials are deformed in tension, they show an 
upper and lower yield point, but no Lfiders band, i.e. 
an initial stabilizing mode without localization. These 
yield point phenomena are usually attributed to an 
initial scarcity of  mobile dislocations. It is therefore 
concluded that the evolution of the mobile dislocation 
density plays a dominant role in the development of  a 
stabilizing mode. 

In his work on non-uniform deformation, Kocks 
[13] sets e0 = 0; SF = ~0 which is tantamount  to let- 
ting 7F ---r Oe. This implies Cv ~ oe or M --* 0 which 
is quite unrealistic. Kocks also proposes for the 
propagation stress AaL -- eL -- O-y (cf. Fig. 4): 

AO'L = 0eLK (39) 

Aa L = ffLM ln (~F/(S)) (40) 

Here (~5 = (I/L) j~ ~ dx is the average deformation 
rate, 0 is the linear work hardening rate at ~ = (~5, 
and eLK is the Lfiders strain as defined operationally by 
Kocks (cf. Fig. 4). 

Writing ~ = QmbVD, where V D is the average vel- 
ocity of  dislocations, the increase of  k from zero to a 
peak value as postulated by Kocks will appear as a 
jump if the acceleration time can be neglected. This is 
possible only if the density of  mobile dislocations is 
very high. However, in the undeformed region, and 
therefore also at the band front, Q,, must be small, 
otherwise a Lfiders band would not form. The 
time needed for dislocation multiplication will cer- 
tainly be much longer than the acceleration time. 
Thus ~V must be small and Equation 40 cannot 
be correct. In the present model the increase of 
occurs with a finite slope and the extra stress at 
the band front is attributed to the lack of  mobile 
dislocations. 
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